
3 Project Plan 
3.1 PROJECT MANAGEMENT/TRACKING PROCEDURES  

  For our Senior Design project, we adopted a hybrid style of agile and waterfall to help achieve our
project's goals. Since the primary foundation for this project has already been laid by the previous year’s
team, our style will be partly agile focused as we’re doing iterative development, where each team member is
working on different parts of the project. We’re also receiving regular feedback from our advisor each week
as we implement and test new features. Since we have a structured foundation for the requirements of our
projects requirements and design, we’re also making use of the waterfall style. We have a clear image of
what the final project should be and have hard deadlines for certain features to be implemented. This
methodology will help us adapt to any unexpected issues that arise as the project progresses, giving us
flexibility in meeting our ever-evolving understanding of the project, while also adhering to the wishes of
our advisor.

To track our process efficiently throughout this semester and the next, we’re using a suite of tools
for project management. This includes git, which is where our project is almost entirely hosted. PrairieLearn
has a feature that will automatically sync any changes made to our git repository to the server, allowing for
easy modification of code. We can also use it for issue tracking, which will help us organize and manage
bugs, tasks, and new features. For team communication, we’re making use of Discord to coordinate tasks,
share updates, resolve issues, and ask for feedback and help. Discord’s channel-based organization will allow
us to have dedicated channels for different project components to ensure we remain organized.

3.2 TASK DECOMPOSITION 

  In our task decomposition, we have many subtasks that go into making our finished product. With
our project management approach being Hybrid between Agile and Waterfall, we have steps to get to a
certain point but then sprints inside of the subtasks in order to complete the project by the desired due
date.



3.3 PROJECT PROPOSED MILESTONES, METRICS, AND EVALUATION CRITERIA 

By the end of the Fall 2024 semester, we would like to reach several key metrics. The first metric
that we would like to reach is to have our PrairieLearn application be completed in a beta version, where all
homework problems have been implemented into our application, and every question is randomized and
autograded. With these metrics planned, we want to have a working version of our application ready for use
by the CPRE 2880 students in the Spring 2025 semester. That way, we can gain helpful feedback that can
better our application.

We also have developed several key metrics that we would like to accomplish by the end of the
Spring 2025 semester. We first want to finish updating documentation from the previous team and complete
any new documentation that we create. This is important for professors that will use our application, as well
as any future teams that continue expanding on our project. We also want to have full canvas integration
incorporated into PrairieLearn, where grades assigned from homeworks in our application will be synced
with Canvas.

3.4 PROJECT TIMELINE/SCHEDULE  

Gantt Chart:

In our gantt chart we detail the tasks and subtasks along with their expected completion dates. The
dates are recorded by the weeks in the semester. This gantt chart and the tasks within detail only the fall
semester. We have our tasks coordinated by color with different subtasks within them. The purple blocks
show our setup subtasks so that we can use PrairieLearn. The blue blocks show our learning and
implementation subtasks. These include things like learning how to actually use PrairieLearn and get
comfortable with it and also finishing implementing questions that the previous years team didn’t
implement. The green blocks show our subtasks for improving upon what is already put in place. This
includes randomization of answers so we can create new question variants and make questions fully
autogradeable to give immediate feedback. The yellow block is for our team's server to be set up and
running. The orange blocks have subtasks that complete the update of all documentation from previous
years. This includes documentation for questions, server setup, videos, etc. And finally, the red block is the
end product with our project being completed with all of the homework questions implemented, fully
autogradeable, and completely randomizable.

With us using a hybrid style development model with both Agile and Waterfall, our gantt chart
most accurately depicts our plan. We will have sprints inside of our tasks and subtasks to ensure that our
project is completed. Inside of our overall plan though, we do take a linear approach. With a lot of setup



starting first, to then get into learning and creating, then to updating and upgrading our work, to then
updating documentation, all ending in a finished product.

 

3.5 RISKS AND RISK MANAGEMENT/MITIGATION 

Get Prairie Learn server initialized

We could run into an issue with ETG where they can’t provide a Virtual Machine for us to use as our server.

Probability of risk: 0.05

Get ASW to sign PrairieLearn Server Certificate for SSL

Only professors at ISU can submit requests to ASW to sign an SSL certificate request. If a professor won’t
submit this request, we wouldn’t be able to allow students to connect to Praririelearn via HTTPS, meaning
malicious actors could snoop on their internet traffic.

Probability of risk: 0.01

Get ISU Integration with Okta for student authentication

Once again, only professors at ISU can submit a request to allow ISU students to use SSO for our
application. If a professor won’t submit this, students won’t be able to sign into our application, making it
useless.

Probability of risk: 0.01

Review CPRE 2880 concepts

To review the concepts from CPRE 2880, each member of the team needs to take the time (individually) to
go through CPRE 2880 material and review concepts that they don’t remember. This task can be delayed if
members of the team aren’t willing to put in the additional time to review concepts from CPRE 2880.

Probability of risk: 0.1

Learn how to use PrairieLearn

It might take more time than needed to learn PrairieLearn if teammates are not putting in the time to dive
through PrairieLearn and learn the different services that it provides. This can happen by team members
not exploring PraireLearn on their own or not reading through any documentation from the basics of
PrairieLearn to how the previous team created their application.

Probability of risk: 0.1

It would further prohibit this task from completion if members on the team aren’t communicating and
sharing their findings for others on the team.

Probability of risk: 0.1

Begin coding questions



This task can be delayed from the projected timeline in our Gantt chart if team members can’t access either
the team’s server or can’t get a local version of PrairieLearn running on their machine

Probability of risk: 0.4

Learn how to use Cybot emulator

This task could become harder to complete in our projected timeline if there is no documentation about the
emulator from the previous team, or if the documentation that does exist isn’t thorough enough.

Probability of risk: 0.3

Learn how to use student code autograder

Similar to the previous task, learning how to use the QEMU ARM autograder could become a more
time-intensive task if the previous team didn’t write detailed documentation. This is because the ARM
autograder was created by the previous team, so the documentation is our main resource for learning about
this specific autograder.

Probability of risk: 0.3

Learn how to use the emulation tools that are already incorporated

Similar to the previous task, this task can become delayed and difficult to complete if the documentation
written for the QEMU ARM autograder is not detailed enough.

Probability of risk: 0.3

Finish implementing questions for HW 9

This task can be delayed if team members are not completing their portion of work, not communicating
with the team, and/or not showing up to weekly team and advisor meetings.

Probability of risk: 0.4

Finish implementing questions for HW 12

Similar to the previous task, this task can be delayed if team members are not completing their portion of
work, not communicating with the team, and/or not showing up to weekly team and advisor meetings.

Probability of risk: 0.4

Learn how to make variants of questions by adding randomization

For some questions, we may struggle to determine parameters to randomize, or with coding the
randomization. This requires learning new coding techniques and implementing bug-free questions.

Probability of risk: 0.4

Update existing questions to make them fully autogradeable

This task can be delayed from our projected timeline if we can’t get the C autograder or the ARM autograder
to work as expected.



Probability of risk: 0.2

This task can also be delayed if team members are not completing their work and doing their portion of the
autograding for certain questions.

Probability of risk: 0.3

Get our server VM running PrairieLearn with all questions

We could get behind on schedule with implementing all questions on the server if team members have not
contributed to implementing all questions from HWs 9 and 12 into PrairieLearn

Probability of risk: 0.3

We could also be prevented from implementing all questions on our server if we can’t create our own server
from ETG

Probability of risk: 0.05

Update Documentation (Local setup, server setup, question implementation, videos)

All documentation could be hindered by the time necessary to develop a cohesive visual design standard.

Probability of risk: 0.2

All documentation could be hindered if previous team documentation is missing more detail than originally
evaluated.

Probability of risk: 0.3

All documentation could be delayed if a team member does not complete their portion of the work timely,
or their work is not up to standard.

Probability of risk: 0.1

288 PrairieLearn Demo: existing HWs implemented with autograded, randomized

Product may perform worse than Canvas in beta testing.

Probability of risk: 0.5

Risk mitigation plan: Use student and professor feedback to optimize PrairieLearn during the spring
semester, reworking whole sections if necessary.



3.6 PERSONNEL EFFORT REQUIREMENTS 

 

Task Description Effort (Hours)

Planning Initial planning of our project. Understand the needs
and requirements of our client. We’ve allocated 10 hours
to ensure we all have a solid understanding of what we
need to make.

10

Research Perform product research on alternative products, view
the previous team's project and gain an understanding
of it. 15 hours should be enough for us to research other
options as well as gain an understanding of how the
previous team’s project works.

15

Learning software Spend time learning how to create questions, randomize
answers, and auto grade them. 15 hours should be
enough for each member to understand how
PrairieLearn works and how to use it to create
questions.

15

Server Setup Get the server that PrairieLearn will be hosted on setup
and ready for hosting. This task mostly relies on us
waiting for members of the ISU IT team to get back to
use, so we allocated 15 hours.

15

Finish implementing
questions

Finish implementing homeworks that last year's team
didn’t finish. We only needed to implement homeworks
9 and 12, so we allocated 20 hours.

20

Get questions
autogradable and
randomized

Modify last year’s teams questions so they are
auto-graded by PrairieLearn and randomized so
students can have multiple attempts. This task is
possibly the most daunting of them all, so we allocated
the most amount of time, 35 hours.

35

Bug testing Perform testing of our project to ensure no bugs will
harm our users' experience. Since we don’t know how
many bugs we’ll have to fix, we allocated 15 hours just to
be safe.

15

Updating documentation Some parts of the previous team's documentation is
either inaccurate or needs to be updated. As such we
allocated 20 hours just to updating documentation and
videos, to ensure that those who follow us could easily
set up a PrairieLearn course.

20

Final demo Have a working demo of all homeworks, with each
question being auto-graded and randomized by the end
of the semester. Since everything should have been done
in previous tasks, we allocated 10 hours just to making

10



sure our demo is ready.

3.7 OTHER RESOURCE REQUIREMENTS 

Many of our remaining resources are more intangible. For help with development, we
will turn to the PrairieLearn git forum or the PrairieLearn Slack server. Being able to read posts
from other developers or even pose our own questions will help us when we get stuck.
Furthermore, we will consult the official PrairieLearn documentation, as well as the previous
CPRE 2880 PrairieLearn’s documentation for guides that are more tailored to our needs.

Beyond our advisor Dr. Jones’ feedback, we may consult the other CPRE 2880 professor,
Dr. Rover, in case she has additional perspectives or features in mind. Both of these professors
are instrumental in providing us with resources from their classes, including homeworks and
lecture materials, as well as guiding our implementation through the expectations they hold for
students. Finally, after we deploy our beta version to students in the spring semester, we will
utilize their feedback to polish and guarantee PrairieLearn’s effectiveness. The 2880 students will
be a crucial resource for us to understand the student experience and making our solution
effective for them.


